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1 resistivity

RESISTIVITY E field accelerate electrons until collisional friction with ions is large
enough to counteract it – electrons reach terminal velocity similar to parachute.

DIFFUSION Collisions with electrons moves the guiding center, so that particle can
diffuse from one field line to another.

2 hard sphere collisions

n =
1
V

=
1
σ · s

=
1

σvth ∆t

and thus,

1
∆t

= γ = n · σ · vth.

In the general case

γcoll =
1

τcoll
= n〈 σ · v 〉

3 electron- ion-“collsions”

We consider the effect of an motionless ion onto the trajectory of an approaching
electron:
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Impact parameter b

Ion

Electron
Ψ

We can derive the dependence of the deflection angle Ψ on the impact parameter b for
general potentials, but here it is sufficient to solve it for ions and electrons:

x

r
bF

F⊥

θ

Using the geometry shown above the force acting on the electron is

F =
e2

4πε0r2 =
k
r2 ,

and its perpendicular component is

F⊥ = F cosθ=
k
r2 cosθ.

Using r = b
cosθ we get

F⊥ =
k
b2 cos3 θ

and the corresponding perpendicular acceleration and velocity are

a⊥ =
F⊥
m

=
k

mb2 cos3 θ=
dv⊥
dt

,

and

v⊥ =
∫ dv⊥

dt
dt =

k
mb2

∫
cos3 θdt.

Now, how does θ vary with t? With

tanθ=
x
b
→ x = b tanθ,

we find that

v =
dx
dt

=
b

cos2 θ

dθ
dt
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or

dt =
b

vcos2 θ
dθ.

The perpendicular velocity after collision computes as

v⊥ =
k

mb2

π/2∫
−π/2

cos3 θdt =
k

mb2
b
v

π/2∫
−π/2

cosθdθ

︸           ︷︷           ︸
2

=
2k

mbv
,

and after replacing k

v⊥ =
e2

2πε0mbv
.

We can now determine the scatter angle

sinΨ =
v⊥
v
,

and for small scatter angles, i.e. sinΨ ≈ Ψ ,

Ψ =
e2

2πε0mbv2 .

Large angle collision occurs if v⊥/v≈ 1:

b0 =
e2

2πε0mv2 .

Furthermore, Ψ = b
b0

for Ψ � 1.

Many small angle angular deflections accumulate to make a large angle collision.
Because Ψ changes randomly, the electron performs a random walk:

〈 Ψ 2 〉= 〈 Ψ 2
1 〉+ 〈 Ψ 2

2 〉+ 〈 Ψ 2
3 〉+ . . .

= 1
2︸︷︷︸

2D

N︸︷︷︸
collision #

〈 dΨ 2 〉︸    ︷︷    ︸
mean deflection angle

.
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Now, to figure out 〈 dΨ 2 〉, we need to know number of collisions per time for fixed b

〈 Ψ 2 〉 increase
unit length

= ∑(dΨ 2 at each b)× N at each b
unit length

× 1
2

d
dL
〈 Ψ 2 〉= 1

2

∫ (b0

b

)2

n2πbdb

= nπb2
0

bmax∫
bmin

db
b

= nπb2
0 ln
(

bmax

bmin

)

bmin : for summing over small angles Ψ ≤ 1, i.e. bmin = b0

bmax : Debye shielding cuts off Coulomb force at bmax ∼ λD =
(
ε0kBT

ne2

)1/2

bmax

bmin
=

λD

b0
=

[
ε0kBT

ne2

]1/2[2πε0mv2

e2

]
,

using kBT = 1
2 mv2

bmax

bmin
=

[
ε0kBT

ne2

]1/2[
ε0kBT

e2

]
4π
(n

n

)
bmax

bmin
= 4πnλ3

D,

and with

ND =
4
3
πnλ3

D

we get

bmax

bmin
= 3ND = Λ.

Introduce the Coulomb logarithm

ln
bmax

bmin
= lnΛ.

Now,

〈 Ψ 2 〉 increase
unit length

= πnb2
0 lnΛ.

Define λm f p to be the typical length for an electron to acquire large angle collision
〈 Ψ 2 〉= 1 from small angle collisions

〈 Ψ 2 〉 increase
unit length

=
1

λm f p
= πnb2

0 lnΛ.

4



S A S C H A K E M P F

Obvioulsy

λm f p =
1

πnb2
0 lnΛ

has the meaning of a mean free path length for large angle collisions. Now recall that
we found for hard sphere collisions that the mean free path is (nσ)−1, and thus

nσ = nπb2
0 lnΛ.

From this follows that the cross section for Coulomb collisions is

σ = πb2
0 lnΛ.

After substituting back b0 = e2/2πε0kBT we get the final expression for the cross
section

σ = π

(
e2

2πε0kBT

)2

lnΛ.

Note that σ is independent of the plasma density and scales with temperature as T−2.
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